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Abstract

Objectives This review sheds insight into an increasingly popular polymer that has been
widely explored as a potential drug delivery system. The abundant, biodegradable and
biocompatible polysaccharide chitosan, with many other favourable properties, has been
favoured as a drug delivery system for the purposes of encapsulating and delivery of
doxorubicin with reduced side-effects.
Key findings Doxorubicin is frequently used as a frontline chemotherapeutic agent
against a variety of cancers. It has largely been able to demonstrate anti-tumour effects,
though there are major shortfalls of doxorubicin, which include serious side-effects such as
cardiomyopathy and myelosuppression, and also an ever-present danger of extravasation
during drug administration. In view of this, drug delivery systems are currently being
explored as alternative methods of drug delivery in a bid to more effectively direct
doxorubicin to the specific lesion site and reduce its systemic side-effects. Liposomes and
dendrimers have been tested as potential carriers for doxorubicin; however they are not the
focus of this review.
Summary Recent advancements in doxorubicin and chitosan technology have shown
some preliminary though promising results for cancer therapy.
Keywords cancer therapy; chitosan; doxorubicin; drug delivery systems

Doxorubicin

Doxorubicin is a member of the cytotoxic anthracycline antibiotics, consisting of an amino-
sugar daunosamine, linked through a glycosidic bond to the C7 of a tetracyclic aglycone,
doxorubicinone.[1] The chemical structure of doxorubicin is shown in Figure 1.[2] This
cytotoxic agent interacts with the DNA double helix to interfere with nucleic acid synthesis,
producing a marked cytotoxic effect on cells in the S phase. This is because intercalation
inhibits nucleotide replication and the actions of DNA and RNA polymerases. The second
mechanism by which doxorubicin affects the cell is through enzyme inhibition. Doxorubicin
binds and inhibits topoisomerase II and prevents transcription. The ring phenolic groups of
doxorubicin contribute acidic functions, while the sugar amino group adds to a basic function,
making the molecule amphotheric.[3]

In a clinical setting, doxorubicin has been widely used for a variety of cancers, successfully
producing regression in acute leukaemia, lymphomas, soft-tissue and osteogenic sarcomas,
paediatric malignancies and adult solid tumours, in particular breast and lung carcinomas.[1]

Doxorubicin is commonly used in combination regimens with other cytotoxic drugs such as
methotrexate, cisplatin, ifosfamide, vincristine and etoposide.

Although effective, doxorubicin therapy also carries an inherent risk. The drug clears
rapidly from the plasma, but terminal clearance is slow. The drug is subsequently metabolised
in the liver, and about 40% of the drug and its metabolites are excreted.[4] Hence, only a small
amount of drug actually reaches and acts on the tumour target site. Doxorubicin-induced
cardiac toxicity has also been well documented by several groups.[5–8] In some patients,
symptomatic cardiomyopathy started within 1 year of doxorubicin administration, while for
others it occurred 15 years after the end of chemotherapy.[9] A study involving 755 patients
with localised osteosarcoma of the extremities noted that about 1.7% of patients developed
clinically symptomatic cardiac toxicity and that contributory risk factors were cumulative dose
and dose intensity.[8] Research is now focusing on ways to protect myocardial cells from
damage during treatment.
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In a bid to improve administration and reduce the toxicity
problems of doxorubicin, there have been attempts at various
drug delivery systems (DDSs) looking to deliver doxorubicin
in a controlled and localised manner at a clinically relevant
concentration. Liposomal doxorubicin, which is currently
marketed as Doxil, consists of doxorubicin encapsulated
in small unilamellar vesicles.[10] The bilayer comprises
hydrogenated soy phosphatidylcholine, cholesterol and
N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-
sn-glycero-3-phosphoethanolamine, which prevents opsoni-
sation by plasma proteins and decreases uptake by the
reticuloendothelial system (RES).[11] Liposomal doxorubi-
cin was noted for its ability to protect patients from some
side-effects of doxorubicin, especially cardiomyopathy,[12]

although its efficacy is still in question as partial response
rates by patients in randomised clinical trials done by the
company were less than 50%.[10] In addition, recent data
have shown that a toxic dermatological reaction, palmar–
plantar erythrodysesthesia (hand–foot syndrome), occurred
in about 50% of all Doxil-treated patients.[13]

Another approach would be to entrap doxorubicin into a
positively charged carrier, which would favour cell adhesion
and cellular uptake because of its attraction to negatively
charged cell membranes.

Ideally, treatment regimens for cancer should not only
target the disease but also minimise any side-effects that may
bring additional trauma to the patients. Improved manage-
ment options, which may include better DDSs, may therefore
alleviate some of the concerns associated with doxorubicin
toxicity.

Materials commonly used to formulate these carriers or
nanoparticles for use as DDSs include lipids,[14] chitosan,[15]

proteins such as human serum albumin,[16] carbohydrates,[17]

and other synthetic materials such as gold.[18] These particles
have individual characteristics and differ in their particle and
drug stability, drug-loading capacity, drug release rates and
targeted delivery ability. A short description together with
the advantages and disadvantages of each material is given in
Table 1. Of these, chitosan has been largely favoured as a
nanoparticle carrier for various agents, including doxorubi-
cin, because of its favourable properties, listed in Table 1.
Nanoparticle technology belongs to a burgeoning field of

nanotechnology which has been defined by the Royal Society
and Royal Academy of Engineering as the design, character-
isation, production and application of structures, devices and
systems by controlling the shape and size at nanometre
scale.[74]

Features of chitosan

Chitosan is found in the natural environment as b(1-4)
2-amino-2-deoxy-D-glucose (Figure 2). The polysaccharide is
harvested from the exoskeleton of crustaceans and insects as
chitin and goes through alkaline deacetylation, resulting in
chitosan. The positively charged polysaccharide is biode-
gradable and is formed from a copolymer of N-acetyl-D-
glucosamine and D-glucosamine.[19] Varying the conditions
used to harvest chitosan results in differences in molecular
weight (50 kDa–2 MDa) and degree of N-acetylation (40–
98%).[75] Chitosan nanoparticles are prepared by some of the
following techniques: chemical cross-linking, the emulsifica-
tion–solvent diffusion method, complex coercavation and
ionotropic gelation; each have their advantages and
disadvantages.

Commonly used in preparation of nanoparticles for drug
delivery, chitosan base is insoluble at neutral and alkaline pH
solutions because of the D-glucosamine residue, providing a
pKa value of 6.2–7.0.[76] Conversely, it is soluble in organic
acids such as acetic acid, citric acid and glutamic acid. Less is
known about chitosan salts; however, depending on the degree
of deacetylation, they are largely soluble in water. Generally,
chitosan salts with lower degrees of deacetylation (£ 40%) are
soluble up to pH 9.0 while those with higher degrees of
deacetylation (≥ 85%) are soluble only up to pH 6.5.

Focusing on particulate formulation of doxorubicin with
chitosan, this review aims to give an overview and some
updates regarding chitosan technology with doxorubicin. The
following section introduces the various groups geared towards
research in this area and their recent endeavours. A literature
search using the keywords ‘chitosan’ and ‘doxorubicin’ was
conducted on PubMed to reveal the groups who have
experimented with chitosan technology as a DDS for
doxorubicin.

Doxorubicin–chitosan nanoparticles

Dextran sulfate–chitosan nanoparticles

A common problem encountered during doxorubicin–chitosan
encapsulation can be attributed to the cationic, hydrophilic
nature of doxorubicin. The polyanion dextran sulfate (DEX)
has been used to mask the positive charge of doxorubicin for
encapsulation into positively charged chitosan.[77] Using
ionotropic gelation with sodium tripolyphosphate, Janes et al.
prepared doxorubicin-loaded chitosan nanoparticles incorpor-
ating DEX. The addition of DEX yielded about 20%
doxorubicin encapsulation efficiency (EE) into chitosan. The
dense, spherical nanoparticles were 260 nm in diameter and
had a positive �-potential of 30 mV. In-vitro release studies of
nanoparticles incorporating DEX (in acetate buffer at pH 4)
showed a burst release of 17% at 2 h, followed by an additional
release of 4.5% over the next 48 h. Based on their results, the
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Figure 1 The structure of doxorubicin.
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authors also speculated that the initial phase of doxorubicin
release could be attributed to doxorubicin located at the surface
of the particles, while the remainder of the unreleased
doxorubicin was assumed to be entrapped within the chitosan
nanoparticles. The degradation of chitosan would therefore be
essential for accomplishing doxorubicin release. DEX also
played an important role in doxorubicin release, as nanopar-
ticles without DEX showed over twice the burst effect after 2 h
under the same conditions. Employing this understanding of
doxorubicin release, in-vitro cytostasis studies for doxorubicin
bioactivity on C26 murine colorectal carcinoma cells and
A375 human melanoma cells demonstrated the ability of these
nanoparticles to slow tumour cell proliferation at a released
doxorubicin concentration one-fifth of the control doxorubicin
solution. This indicated that doxorubicin bioactivity was
not impeded, but was retained within the nanoparticle. Similar
experiments carried out on chitosan–doxorubicin complexes
(213 nm in diameter) yielded less impressive results for
doxorubicin release and lesser cytostasis, suggesting the
presence of strong chemical bonding that might prevent
doxorubicin release or cause doxorubicin damage. The authors
also hypothesised that the cytotoxic activity displayed by
these nanoparticles was due to endocytosis, as confocal
microscopy results suggested that nanoparticles were inter-
nalised by cells and degraded intracellularly to release the drug.
As the seminal study describing chitosan nanoparticles as
carriers for the delivery of the cationic anthracycline drug
doxorubicin, the authors were successful in encapsulating
appreciable quantities of doxorubicin by incorporating the
polyanion DEX, circumventing the inherent polymer–drug
charge repulsion. The nanoparticles also demonstrated minimal
burst release, which is favourable for a controlled, sustained
release mechanism for drug delivery. Although promising,
most of the published results were preliminary findings that will
require more in-vitro studies with doxorubicin-resistant cell
lines and in-vivo studies to clarify the effect of doxorubicin–
chitosan nanoparticles before recommending it as a potential
viable DDS. Although no updates have been published since
the first report,[77] the authors have contributed greatly to the
knowledge and experimental proceedings involved in doxo-
rubicin–chitosan nanoparticles, providing a platform for
subsequent researchers to build on.

Dextran sulphate–chitosan hydrogel
nanoparticles

A similar study that utilised DEX to first couple doxorubicin
into a conjugate before encapsulating it into chitosan
hydrogel nanoparticles through a reverse microemulsion
method with surfactant reported the potential of doxorubicin–

DEX chitosan nanoparticles in vivo.[78] These 100 nm
spherical nanoparticles were administered to mice intrave-
nously via the tail vein at a dose of 15 mg/kg body weight
weekly for 1 month and evaluated through studies looking at
the regression of tumour size and survival of mice over a
period of 70 days. As expected, untreated tumour-bearing
control mice showed a progressive increase in tumour size
over a period of 40 days, after which the mice died as a result
of the tumour volume. A similar observation of increased
tumour volumes was seen in a group receiving chitosan
alone. Mice receiving treatment with doxorubicin alone
(8 mg/kg body weight) showed a slow gradual increase in
tumour size after day 45. Comparatively, the group of mice
treated with doxorubicin–DEX conjugate (15 mg/kg body
weight) or doxorubicin–DEX chitosan hydrogel nanoparti-
cles demonstrated initial increases in tumour volume up to
45 days, followed by gradual regression of the mean tumour
volume. Doxorubicin–DEX chitosan nanoparticles resulted
in faster regression in tumour volume compared with
doxorubicin–DEX conjugates, clearly showing that encapsu-
lation of doxorubicin–DEX in chitosan nanoparticles has
greater effects in terms of tumour regression than the
doxorubicin–DEX conjugate itself. In addition, there were
significant differences in survival rates between the con-
jugate (25% over 90 days) and nanoparticle system (50%
over 90 days).Thispotentiallybeneficial effectofdoxorubicin–
DEX nanoparticles may be attributed to tumour-selective
accumulation through the enhanced permeability and retention
effect (ERP) of macromolecules in solid tumours. A higher
accumulation of nanoparticles in tumour tissues and gradual
release of doxorubicin aided by lysosomal degradation at the
tumour site could also have contributed to better performance
of the nanoparticle, a view also supported by Janes et al.[77]

Interestingly, the authors boldly concluded that this new
nanoparticle formulation was able to effectively reduce the
toxicity ofdoxorubicinwithout first observing the target organs
of the animals for possible side-effects. Nonetheless, the work
of Mitra et al.[78] has been helpful in establishing the working
potential of doxorubicin–DEX nanoparticles in vivo, pre-
viously not determined by Janes et al.,[77] using a similar
nanoparticle formulation. Despite initial positive results, the
authors seemed to have discontinued work on these doxorubi-
cin–DEX chitosan hydrogel nanoparticles, as no reports have
been published since.

Glycol–chitosan nanoaggregates

In a novel in-vivo study reporting the tumour-targeting effect
of glycol–chitosan as a carrier material, fluorescein isothio-
cynate (FITC) was conjugated and used to track the
accumulation of glycol–chitosan nanoaggregates (FITC–
GC) at the tumour site.[79] Similar nanoaggregates consisting
of doxorubicin attached to glycol–chitosan (GC–doxorubicin)
via a pH-sensitive linker (N-cis-aconitic anhydride) allowed
observation of intratumour release of doxorubicin from the
nanoaggregate carrier. Results revealed that the FITC–GC
and GC–doxorubicin nanoaggregates were similarly sized,
around 250–300 nm diameter, and the GC–doxorubicin
nanoaggregates were reported to be near spherical. The
authors also determined that physical entrapment of doxo-
rubicin into GC–doxorubicin nanoaggregates yielded about
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eight-fold greater entrapment of doxorubicin compared with
chemically conjugated doxorubicin (39% vs 5% weight,
respectively). This resulted in an impressive doxorubicin
loading efficiency of 97%. FITC–GC nanoaggregates were
injected via the tail vein into rats bearing human mesothe-
lioma tumours, at predetermined time points. When the study
was concluded, urine and blood were collected and various
tissues such as the liver, heart, lung, kidney, spleen and tumour
were excised. Results from fluorescence microscopy imaging
revealed that FITC–GC nanoaggregates were sustained at high
levels in the blood and increasingly detected in the tumour
tissues, levels peaking 8 days after injection, when the animals
were sacrificed. On the other hand, initial distribution of
FITC–GC to the kidney and liver decreased over 8 days,
suggesting that the increased distribution of FITC–GC nanoag-
gregates in the tumour could be attributed to its long residence in
blood and limited distribution to other tissues. This also
indicated that the FITC–GC nanoaggregates should accumulate
passively in the tumour tissue, probably via the EPR effect,
and escape the RES. These observations were supported by a
subsequent study,[80] which reported biodistribution in the liver
(~4% of dose), spleen (~1%of dose), kidney (~35%of dose) and
tumour (> 20% of dose). This finding also supported the
previous study of Son et al.,[79] which reported that the amount
of nanoaggregates in the tumour gradually increased as blood
circulation time increased. FITC–GC nanoaggregates demon-
strated circulation in the blood (14% of dose) and were
minimally detected in the heart and lungs, which is promising
for prevention of doxorubicin-associated cardiac toxicity.

Upon intravenous injection of the chemically conjugated
doxorubicin nanoaggregates (doxorubicin/GC–doxorubicin) to
tumour-bearing rats (10 mg of equivalent doxorubicin/kg),
tumour growth was suppressed over 10 days while constantly
maintaining body weight, compared with decreasing body
weight in rats receiving doxorubicin solution alone (10 mg/kg).
These data supported results from fluorescence microscopy
indicating that doxorubicin/GC–doxorubicin mainly accumu-
lated in tumour sites while free doxorubicin was delivered
to tumour as well as normal tissues. With this, Park et al.[80]

demonstrated that doxorubicin/GC–doxorubicin exhibited
lower systemic toxicity but comparable in-vivo anti-tumour
activity. A drawback to glycol–chitosan nanoaggregates
prepared by Son and colleagues[79] and Park and collea-
gues[80] were the particularly long and tedious processes
of nanoparticle formation, which required up to 3 days of
preparation using complex procedures and specialised
equipment. In addition, the authors speculated and inferred
from results of fluorescence microscopy that GC–doxorubicin
nanoaggregates would similarly localise to tumour sites like
FITC–GC, although they did not actually demonstrate true
localisation. Thus, a possible alternative could be to use
fluorescently tagged GC–doxorubicin nanoaggregates for
future studies. Nevertheless, it is evident from both studies
that nanoaggregates based on hydrophobically modified
chitosan have promising potential as carriers for hydrophobic
anti-tumour agents.

Oleoyl-chitosan nanoparticles

Another approach adopted involves hydrophobically mod-
ified chitosan as a carrier for hydrophobic doxorubicin.[81]

It was observed that longer hydrophobic chains and bigger
hydrophobic groups helped to stabilise micelle structure and
protect drug compounds from the environment. Thus, oleic
acid was chosen to prepare oleoyl-chitosan (OCH) to form
self-assembled nanoparticles. Doxorubicin–OCH nanoparti-
cles were prepared using a complex oil/water emulsification
technique, resulting in nanoparticles with a mean diameter of
about 315 nm. Doxorubicin (10 mg) was efficiently loaded
into OCH nanoparticles with an EE% of 52.6%, and the
drugs could later be released at various rates depending on
the pH of the solution. A pH of 3.8 allowed doxorubicin to be
rapidly and completely released from OCH nanoparticles,
whereas pH 7.4 showed sustained release followed by burst
release. Doxorubicin–OCH nanoparticles also outperformed
free doxorubicin in terms of growth inhibitory rates in four
human cancer cell lines (A549, Bel-7402, HeLa and SGC-
7901 cells) at all concentrations ranging from 0.05 to 10 mg/ml
equivalent doxorubicin, showing better inhibition of cancer
cells than doxorubicin. OCH nanoparticles maintained the
pharmacological activity of doxorubicin. OCH nanoparticles
alone also displayed less damaging effects on erythrocyte
membranes in a haemolysis test, and almost no cytotoxicity
was detected in the four cell lines, displaying great potential as
new drug carriers. The authors have embarked on further
in-vivo studies.

Doxorubicin–chitosan microspheres

Microspheres or nanospheres, as shown in Figure 3, are
spherical structures which consist of a matrix system where
drug is entrapped, attached or encapsulated. The surface of the
sphere is amenable to modifications by addition of polymers
and biological materials such as ligands or antibodies for
targeting purposes.[82]

Doxorubicin-loaded chitosan microcapsules in
transcatheter arterial chemoembolisation

A major potential for chitosan DDSs lies in the treatment of
hepatocellular carcinoma (HCC), in which the tumour is fed by
the hepatic arteries while the normal tissue receives its blood
supply from the portal vein. Doxorubicin-loaded chitosan
microcapsules are currently being explored as therapy options
for HCC via transcatheter arterial chemoembolisation
(TACE),[83] which serves as an embolic material enabling
tumour ischaemia and necrosis while preserving functional
liver tissue. Kim et al.[83] prepared doxorubicin hydrochloride
(DHCl)-containing chitosan microspheres (CM) using a
complex expanding–loading–shrinking process (10 mg/
100 mg CM) to increase drug loading rate and decrease drug
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Figure 3 Structure of doxorubicin-loaded microsphere.
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loss in solution. The sizes and charge potential of these particles
were unknown, although the authors showed a red, evenly
sized, smooth-textured, spherical particle, whose round shape
would be important to allow effective ischaemic effect of
TACE in HCC. In-vitro drug release studies conducted over a
period of 7 days reported that 22.6% of DHCl was released,
while the remaining 77.3% was thought to be retained within
the network of the CMs. Kim et al.[83] postulated that, when
extrapolated to an in-vivo setting, the release of drug will be
sustained over a long time because of the physical trapping of
doxorubicin. On the basis of these findings, Kim et al.
conducted TACE with DHCl–CM in rabbits transplanted with
hepatic tumours simulating HCC. Seven days post-TACE
showed excellent results of total infarctions of the tumours due
to necrosis in five of the seven rabbits and an overall size
reduction (about 15%) of tumours. In this study, DHCl was not
observed to be directly involved in chemoembolisation; rather,
the infarction developed because of the embolisation of CMs, as
observed by necrosis caused by lack of nutrition and oxygen.
These DHCl–CMs present a potential candidate both as
chemoembolisation materials and for drug encapsulation,
banking on the simple, effective, time-saving method that
actively loads drug and avoids excess drug loss. With further
research, it is also possible that the expanding–loading–
shrinking method of microsphere formation can be extended
to a diverse range of drugs.

Chitosan–poly(acrylic acid) hollow nanospheres

The observation of sustained drug release using chitosan
DDSs is supported in another study by Hu et al.,[84]

where chitosan–poly(acrylic acid) (CS–PAA) hollow nano-
spheres (118 nm in diameter) demonstrated a continuous
release of entrapped doxorubicin (4.3% drug loading content)
up to 10 days in vitro and comparable cytotoxicity against
HepG2 cells compared with free doxorubicin. In this study,
which aimed to identify localisation of doxorubicin nano-
spheres following in-vivo doxorubicin delivery (4.3 mg/kg
doxorubicin equivalent) revealed a gradual decrease of
doxorubicin nanospheres in the plasma compared with a
rapid decrease of free doxorubicin (4.3 mg/kg body weight)
over a period of 24 h. This phenomenon, which has also
previously been seen,[78–80] was indicative of a prolonged
circulation of doxorubicin nanospheres in the blood, resulting
in considerably higher doxorubicin concentration in blood
than with free doxorubicin. Hu et al.[84] observed high initial
concentrations of doxorubicin nanospheres, which decayed
rapidly in the kidney, spleen and lung, showing some
correlation to the findings by Park et al.,[80] who reported
considerable decreases in doxorubicin in the kidney, blood
and liver 3 days after injection. In addition, an interesting
observation was the discovery of FITC–tagged CS–PAA
hollow nanospheres delivered to the brain, which has always
been a hurdle for treatment because of the blood–brain
barrier (BBB). The authors believe that the good mucoadhe-
sive properties of both chitosan and PAA might have
enhanced the interaction between CS–PAA nanospheres
and brain microvessel endothelial cells, resulting in the
transfer of CS–PAA nanospheres to the brain. The main
criticism of this report is the lack of studies in a relevant
tumour-bearing animal model, as the presence of a tumour

would be likely to affect the biodistribution of CS–PAA
nanoparticles and result in a different understanding of
nanosphere deposition in a cancerous setting. Nonetheless,
the authors have helped identify some potential target organs
(e.g. brain, blood, liver) that might benefit from the CS–PAA
DDS systems. Hu and colleagues are now embarking on
further studies looking at the transfer ability of CS–PAA
hollow nanospheres across the BBB.

Doxorubicin–chitosan microcapsules

Microcapsules or nanocapsules (Figure 4) are vesicular systems
with a central cavity or core where a drug is confined. The core,
either hydrophobic or hydrophilic, is surrounded by an outer
shell polymeric membrane which allows the attachment of
surface-bound targeting ligands or antibodies.[84]

Chitosan–alginate microcapsules

Chitosan–alginate microcapsules were formulated as a drug
carrier/delivery system for doxorubicin.[85,86] The formulation
of these microcapsules was achieved in two different ways.
Firstly, a simple and easily replicable emulsification–gelation
technique was used to formulate alginate–chitosan microcap-
sules, resulting in particles that were about 77 mm in
diameter.[85] Although the resultant particles were fairly
large, this gentle formulation method has an advantage as its
weak electrostatic attraction means that the structure of the
loaded drug is not destroyed, compared with other tougher
methods used such as chemical cross-linking and heating
solidification. Another method formulated chitosan multilayer
microcapsules using a laborious method that required deposi-
tion of oppositely charged chitosan and alginate onto
carboxylmethyl cellulose-doped CaCO3 colloidal particles in
a layer-by-layer fashion.[86] This was then completed by cross-
linking with glutaraldehyde and decomposition of the cores by
disodium ethylenediaminetetraacetic acid, producing signifi-
cantly smaller microcapsules of 5 mm in diameter. Both
microsphere formulations achieved good doxorubicin-loading
capacities into the alginate–chitosan microcapsules. Li et al.
reported 11% doxorubicin loading and increased EE% from
67% to 80% with the enhancement of drug/carrier ratio from
1 mg/ml to 2 mg/ml.[85] Although Zhao et al. did not report
doxorubicin loading or EE%, the authors noticed that increased
drug feeding concentration resulted in linear and non-linear
increases of drug concentrations in the bulk and in the capsule
interiors, respectively.[86] Subsequently, in-vitro testing of the
doxorubicin-loaded microcapsules revealed a striking
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Figure 4 Structure of doxorubicin-loaded microcapsule.
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inhibitory effect on the growth of three cancer cell lines (human
gastric carcinoma BGC-823, liver cancer Bel-7402, cervical
carcinoma HeLa) that became more distinct and significant
after 48 h.[85] In addition, phase-contrast microscopy of HepG2
cells after incubation with doxorubicin-loaded microcapsules
over 48 h revealed condensed chromatin and fragmented
nuclei – signs of apoptosis.[86] This substantiated observations
made by transmission electron microscopy of dark centres in
doxorubicin-loaded microcapsules with strong fluorescent
emissions from doxorubicin molecules, and also confirmed
doxorubicin release data, which suggested initial rapid
doxorubicin release followed by plateaued release after
6 h.[86] Similar to results reported by Kim et al.,[83] chemoem-
bolisation in rabbits successfully delivered doxorubicin micro-
capsules to the renal artery and caused kidney embolism, with
serious ischaemic necrosis after 4 weeks of embolisation.[86]

This demonstrated the effectiveness of microcapsules to carry
chemotherapeutic drugs for chemoembolisation and for
embolisation in cancer treatment. Doxorubicin-loaded micro-
capsules (2 mg/kg per week for 3 weeks) injected directly into
hepatic tumours was also more effective at tumour inhibition
than free doxorubicin (40.3 vs 30.6%) loaded at similar
concentrations.[86]

This is a ground-breaking study, as it demonstrates for the
first time in animal studies, the applicability of extensively
investigated multilayer microcapsules in the field of drug
delivery and cancer treatment. Unfortunately, the adopted
procedure for microcapsule formulation is painfully complex
and time consuming, and requires some specialised equip-
ment. Thus, this poises the emulsification–gelation
method[85] as a better alternative to microcapsule formula-
tion, unless particle size becomes an important factor in its
application.

Doxorubicin–chitosan microshells

Microshells are conventionally constructed by a layer-by-layer
self-assembly of oppositely charged polyelectrolytes onto
dissolvable colloidal particles.[87,88] The constructed hollow
shells (Figure 5) have been used for nanoscale encapsulation
of drugs, proteins, dyes and nanomaterials.[89,90] Encapsula-
tion of anti-cancer drugs in the microshells can provide a
means of concentrating and protecting drug molecules as well
as decreasing toxic side-effects. Furthermore, the ability to
customise the microshells with tailored wall thickness,
composition, size and shape presents an advantage for
microshells as an ideal drug delivery vehicle.

Alginate–chitosan microshells

In a technique closely resembling formulation of micro-
capsules,[86] alginate sodium (ALG) and chitosan were used
in an electrostatic layer-by-layer self-assembly technique to
fabricate bio-polyelectrolyte microshells.[91] Tao and
colleagues were able to easily and effectively load doxorubicin
(2 mg/ml) into the interior of the shells in an uncomplexed
manner, verified by confocal laser scanning microscopy,
which yielded a high fluorescence intensity of fluorescent
doxorubicin in the shells. Doxorubicin-loaded microshells
were about 8 mm; the size depended largely on the number of
layers of shells assembled. In addition, the group was able to
successfully load another anti-cancer drug, peptide BH3, into
the ALG–chitosan (ALG–CS) shells using this same method,
extending the application of ALG–CS microshells as a
potential therapeutic delivery system for peptides. The results
of in-vitro tests of the biological activity of doxorubicin-
loaded microshells also suggested that, with the same
concentration of doxorubicin, a consistently higher percent
of cell kill was observed in both chemo-sensitive (H460 cell
line) and chemo-resistant (A549) lung cancer cells, while no
cytotoxic activity was observed with the control microshells
alone. Thus, the binding of the doxorubicin-loaded microshells
to the cells would effectively result in a higher local
concentration of doxorubicin in the direct vicinity of the
cells and account for the greater cytotoxicity observed. Some
future studies could involve looking at timed release of
doxorubicin from the microshells, as this DDS could
potentially work to achieve sustained release of doxorubicin
over extended periods of time through the degradation of each
layer of the microshell, increasing circulation time for
doxorubicin-loaded microshells and organ accumulation.

Doxorubicin–chitosan micelles

Micelles are spherical, globular structures consisting of
hydrophobic and hydrophilic regions (Figure 6). Constituent
molecules with a hydrophobic end clump together to form
the central core of the sphere in a liquid environment, while
hydrophilic ends of the molecules are in contact with the
surrounding liquid environment, forming a mantle.[92] The
hydrophobic central cores of micelles are traditionally used
for delivery of water-insoluble drugs in DDSs, whereas
modification of the hydrophilic shell affects pharmacokinetic
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behaviour.[93,94] Polymeric micelles are advantageous as
DDSs as they exhibit prolonged circulation, tumour localisa-
tion by the EPR effect and possibly controlled drug
release.[57,95,96]

Chitosan moieties were modified in two ways: addition of
a long-chain alkyl group, -N-succinyl-N0-octyl,[97] and chemi-
cal conjugation with 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC),[98,99] to allow self-aggregation for the
formation of chitosan micelles.

N-succinyl-N0-octyl chitosan micelles
1H NMR spectra analysis and thermograph results of
N-succinyl-N0-octyl chitosan (SOC) showed that amino groups
of chitosan were substituted by octyl and succinyl groups.[97]

EE% and doxorubicin loading were dependent on the drug-
to-carrier ratio, achieving 76.9% EE and 36.4% doxorubicin
loading at the optimum drug : carrier ratio of 0.8 : 1.
Doxorubicin loading was also significantly affected by the
octyl amount: the higher the amount of octyl chain, the higher
the EE% and doxorubicin loading, as well as an increase in
particle size (from 130 nm to 170 nm in diameter). The authors
also observed sustained release of doxorubicin over a period
of 16 days, with higher octyl-content micelles displaying a
decreased release rate. Observations from flow cytometry
showed that doxorubicin-loaded micelles all emitted higher
fluorescent intensity in contrast with free doxorubicin,
suggesting that doxorubicin-loaded micelles were taken up by
cells to a much greater extent than free doxorubicin. This
observation was supported by in-vitro cytotoxicity tests of SOC
on four different cancer cell lines (HepG2, A549, BGC, K562),
which established that the 50% inhibitory concentration of
doxorubicin-loaded micelles displayed a three- (HepG2 and
A549) to five-fold (BGC and K562) increase in cytotoxicity in
these cancer cell lines compared with free doxorubicin. Xu
et al. also postulated that doxorubicin-loaded micelles could
become more cytotoxic against cancer cells when they were
incubated with cancer cells over a longer period (> 3 days).[97]

Stearic acid-grafted chitosan
oligosaccharide micelles

Hu et al.[98] and Ye et al.,[99] both from the same group,
investigated the potential of stearic acid-grafted chitosan
oligosaccharide (CSO–SA) as a potential DDS for doxo-
rubicin. Glutaraldehyde cross-linked CSO–SA micelles
loaded with doxorubicin (30 nm in diameter) were postulated
to reduce initial drug burst release from micelles and
improved the existing characteristics of micelles. Although
cross-linking did not produce much effect on the micelle size
and EE%, it was effective in decreasing the drug burst (31%
unmodified micelles vs 22% crosslinked micelles at time 0)
and promoting sustained drug release over a period of 24 h.
Still, both cross-linked and unmodified doxorubicin-loaded
CSO–SA micelles obtained 93% EE, a positive �-potential
(51.8 vs 69.1%) but a less impressive 1.67% doxorubicin
loading. Nonetheless, it was shown that doxorubicin-loaded
micelles (across a concentration range of 0–4 mg/ml
doxorubicin micelles) were more effective at inducing
cell death than free doxorubicin (across a concentration
range of 0–4 mg/ml doxorubicin) in three different cells lines

(A549, Lewis lung carcinoma LCC and human ovarian
cancer cells SKOV3). Here, doxorubicin-loaded glutaralde-
hyde cross-linked CSO–SA significantly improved the
cytotoxicity in the chemoresistant SKOV3 cell line, indicat-
ing the improved uptake of doxorubicin into the cells. This
could be attributed to the spatial structure of the multi-
hydrophobic core, which allows the CSO–SA micelles to be
rapidly internalised into tumour cells, providing an enhanced
delivery of doxorubicin with decreased toxicity. If further
verified, this finding would potentially be useful in treating
chemoresistant tumours that no longer respond to conven-
tional chemotherapy.

Using a similar formulation method to Hu et al.,[98] further
characterisation was conducted to study the effect of incor-
poration of stearic acid (SA) into CSO–SA micelles using
doxorubicin as a model drug.[99] As a result of increased
amount of SA in the formulation (8 mg in Hu et al.[98] vs 0.2 g
in Ye et al.[99]), micelle size dropped by more than 10 nm for
both doxorubicin-loaded and empty CSO–SA micelles. How-
ever, further characterisation, which involved varying the ratio
of SA to CSO–SA, showed that increasing SA ratios resulted in
larger micelles, up from 20 nm to 80 nm, accompanied by a
decrease in �-potential. Doxorubicin-loaded micelles were also
reported to be smaller than empty micelles,[99] which was in
contrast to previous observations;[98] the authors attributed this
effect to van der Waals interactions between doxorubicin and
CSO–SA molecules. Varying the pH from 7.2 to 2.7 also
yielded an increase in micelle size from 30 nm to 250 nm. The
effect of varying the SA : CSO–SA ratio had no significant
effect on EE% and drug loading, as all formulations maintained
consistent EE% (about 50%) and drug loading (5%). Drug
release profiles of doxorubicin-loaded CSO–SA micelles were
similar to an earlier report,[100] supporting observations that
drug release rates reduced with increasing pH, where the fastest
release occurred at pH 2.7 (70% in 8 hours) and the slowest
drug release at pH 7.2 (30% in 8 hours). This release sustained
over a period of time is again a desirable feature for DDSs, as it
will allow consistent drug release at target organs instead of
immediate dumping of drugs, which might cause toxicity.

Chitosan sheets/films

In their seminal study involving chitosan sheets, Saito
et al.[101] used a simple agglutination technique to develop
pure flat, flexible chitosan sheets in order to explore the
feasibility of chitosan as a drug carrier in topical lesions.
Under phase-contrast microscopy, the sheet appeared as a
knitted stitch with fine fibrous structure. The presence of
uneven apertures also suggested the possibility of air and
water permeation. The smooth and flexible texture of the
chitosan sheet is likened to a sponge or gauze that would be
easily handled in medical applications. Thus, a doxorubicin-
containing chitosan sheet (1 mg/ml) was inserted into
the peritoneal cavity of a mouse to study its degradation.
Scanning electron microscopy showed initial degradation
of the doxorubicin-containing sheet after 24 h; the sheets
gradually degraded into lumps of particulates after several
months. Fluorescence microscopy also confirmed doxorubi-
cin adsorption by chitosan. Drug release studies confirmed
that doxorubicin was released from the sheet, as doxorubicin
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was detected in the urine and liver while doxorubicin
metabolites were detected in blood 2 weeks after doxorubi-
cin-containing sheets were placed into the peritoneal cavity
of mice. In addition, studies to determine residual doxo-
rubicin in chitosan sheets after in-vivo application revealed
that doxorubicin content in the sheets decreased gradually,
indicating that doxorubicin was released into tissues.
Doxorubicin (0.5–1 mg/g) was also detected in chitosan
sheets up to 2 months after in-vivo application, suggesting
the ability to maintain the pharmacological effects of
absorbed doxorubicin over an extended period. Although
the authors were unable to ascertain the rate of doxorubicin
release and mechanism of chitosan degradation, they showed
that the biodegradable chitosan sheet appeared to decompose
and release doxorubicin, resulting in fragile sheets and
particulates several months later. Hopefully this group will
do some studies looking at how delivering doxorubicin
through chitosan sheets might decrease toxicity and also
further characterise their doxorubicin-containing chitosan
sheet system to improve drug loading capacity and possibly
delay chitosan degradation.

Conclusions and future directions

Drawing on conclusions from the various papers described
above, chitosan formulated in nanoparticles, microcapsules,
microspheres, micelles and films has shown great potential
for encapsulating doxorubicin. The encapsulation efficien-
cies of doxorubicin into chitosan were reported to be about
50% in SA-grafted chitosan oligosaccharide micelles[99] but
was increased to 93% when glutaraldehyde cross-linking was
performed.[98] Glycol–chitosan nanoparticles have shown
the best encapsulation efficiency of 97%,[79] which might be
a better option as far as chitosan DDSs are concerned,
compared with oleoyl-chitosan nanoparticles which only
managed an EE of 52.6%. The process of doxorubicin
encapsulation did not affect doxorubicin’s cytotoxic proper-
ties; instead studies have shown that doxorubicin encapsula-
tion into chitosan had improved doxorubicin’s cytotoxicity
both in vitro[81,91,97,98] and in vitro.[78,79,83,85,86] Conversely
some groups found that doxorubicin–chitosan technology
proved to be only as efficacious as doxorubicin solution
alone.[77,80,84]

Administration of doxorubicin–chitosan DDSs has pre-
vailed over doxorubicin solution in ways such as lowered
systemic toxicity,[78–81,85] and sustained, controlled release
of doxorubicin at the lesion site,[80,81,84,97–99,101] which
counters problems of inappropriate drug loads. High
concentrations of doxorubicin–chitosan nanoaggregates
were also found to be in circulation for up to 8 days,[79]

while a novel doxorubicin–conjugated chitosan sheet tech-
nology was shown to release doxorubicin and doxorubicin
metabolites into the surrounding tissues, blood and urine for
up to 2 weeks;[101] this was in comparison with doxorubicin
solution which has a short half-life of several hours. Apart
from distribution in the kidney, liver, lungs, blood, spleen
and tumours,[79,80,101] confocal laser scanning microscopy
also detected, for the first time, distribution of doxorubicin-
loaded nanospheres in the brain, paving the way for future
research and treatments that are currently hindered by the

BBB.[84] These studies have also speculated on the potential
of chitosan technology as a viable DDS for other cytotoxic
drugs.

It is difficult to conclude which method might be the most
effective way of doxorubicin encapsulation, as the various
methods have their advantages and disadvantages. The most
suitable DDS will depend on its intended use and the disease
model. Table 2 summarises the different particles presented in
this review to enable scientists to further explore particles that
might suit their purposes. It is crucial to embark onmore in-vivo
studies, aiming to improve and better characterise the current
technologies in order to achieve more consistent, reliable results
that can potentially be translated into clinical studies.
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